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COMPARATIVE PROPERTIES OF SOME TIME DIFFERENCING SCHEMES FOR LINEAR AND 
NONLINEAR OSCILLATIONS 
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ABSTRACT 

The properties of 13 computational methods for the integration of first-order differential equations in time are 
studied. Special attention is given to the representation of periodic fluctuations in a simple spectral baroclinic model 
of the atmosphere. Errors in the energy, three dimensional scale, and frequency for linear and nonlinear oscillations 
are evaluated. 

Comparisons of both one-step and two-step methods are made. It is found that the two-step schemes compare 
favorably with one-step methods only when given the advantage of a smaller time increment. Even then, it is con- 
cluded that certain one-step procedures incorporating two or more extrapolations over each constant .increment of 
time produce errors which grow most slowly. With small time increments, these errors are generally made smallest 
by increasing the number of time extrapolations at each step rather than by decreasing the time increment. 

1. INTRODUCTION 
The continued development of numerical modeling in 

recent years has produced insight into the mechanisms of 
various atmospheric phenomena. The broadened spectrum 
of physical problems has been accompanied by widened 
investigations into appropriate numerical methods. Im- 
pressive advances in the area of space differencing have 
resulted [l]. On the other hand, meteorological interest 
in time-diff erencing procedures has usually been limited 
to spectral studies of geophysical circulation models 
(Bryan [3] ; Lorenz [ 131 ; Veronis [ 171). However, Lilly 
[ 101 has suggested that time-differencing methods will 
now assume a new significance as a consequence of the 
advances in space-diff erencing methods. Developments 
in this area would appear to be especially important for 
studies of the large-scale climate and its long-period 
fluctuations. 

The purpose of this paper is to present comparative 
properties of a number of time-diff erencing schemes de- 
signed to handle atmospheric-like oscillations. To a large 
extent, the methods considered here supplement those 
discussed by Kurihara [9] and Lilly [lo]. In this paper, 
major attention is given to “one-step” or “deterministic” 
schemes whereby the solution a t  a given time step depends 
only upon the single state of the system a t  the preceding 
time step. Such methods are unlike “multistep” methods 
which often produce nonphysical “parasitic” solutions. 
However, the suppression of truncation errors in one 
step methods cannot be accomplished by the use of past 
solution information, as in the case of multistep methods. 
Thus, the deterministic scheme must develop greater ac- 
curacy by generating approximate states (usually in the 

I Portions of this study were taken from a Ph. D. thesis submitted to the Dept. of 
Meteorology, Massachusetts Institute of Technology. 

future, through the use of a t  least one forward difference). 
As will be seen later, the extra work often appears to be 
worth the extra effort for the one step methods. 

In section 2, the exact linear and nonlinear character- 
istics of a maximally simplified baroclinic model described 
by three spectral variables are presented. The compara- 
tive performances of 10 different one step computational 
schemes in this model are given in section 3. Section 4 
demonstrates that reduction of the time increment At 
is not always the best way to increase accuracy for one 
step schemes. Section 5 summarizes the properties of 
three different two step methods. Concluding remarks 
are contained in section 6. 

9. SPECTRAL MODEL OSCILLATIONS 
The governing laws for numerical models may often be 

expressed as a system of first-order ordinary differential 
equations in time 1 :  

Here, i=1, 2, . . ., M. The elements xi denote the de- 
pendent variables a t  specific points in grid point or wave 
number space. Included in the functions ji are quadratic 
representations of the energy-conserving advective 
processes. 

With given initial conditions, the finite difference all- 
proximation to the system (2.1) yields a solution which 
eventually departs from the exact solution. A measure 
of the truncation error is given by the order of the last 
term in which the Taylor Series expansion of (2.1) and 
its finite difference form agree. This order of accuracy 
characterizes the local generation of error but is not 
helpful in describing the accumulation of error over a 
length of time. Instead, we study the computational 
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stability of solutions for a particular numerical model. 
The st,ability properties are indicative of integrated errors 
and hence depend upon the character of the solution 
itself. 

We confine ourselves to studying simple linear and non- 
linear systems that exhibit periodic fluctuations. A similar 
approach has been followed by Lilly [ lo] .  A particularly 
simple system arises from the spectral form of a two-level 
quasi-geostrophic model with fixed stability. In  the case 
of adiabatic, frictionless flow, the equations have been 
given by Lorenz [ E ] .  With slight changes in scaling and 
definitions, these contain the following energetically com- 
plete subset: 

@E= +C( i+ Bw) - l ( l +  B,- Bw)Bz$m 
d t  

*=-CB;;?(B,-Bw)6,e,. d t  

Here, # and e are nondimensional representations of the 
vertically averaged (‘(barotropicf1) and vertical shear 
(“baroclinic”) flows, respectively. t is nondimensional time. 
The static stability a is contained in the parameters 
B,=Za; and B,=aa&, where a;= 1.000 and a&= 1.444444 
are effectively squared wave numbers. The subscripts 2 
and W refer to the zonal and wave modes, respectively. 
C= +0.8002814 is the interaction coeficient for this set. 

With a=0.10 and initial conditions e Z ( O ) =  + O . l O O O ,  
e,(O) = +0.0349, and #w(0) =O.OOOO, an exact solution to 
the set (2 .2)  is given in terms of elliptic functions of time 
(Lorenz [ 11 I). The solution is 

~ , ( t ) = + O . i O O O  sn (ht+K) 
e&) = +0.1020 dn (h t+K)  

ILW(t)= -0.0582 cn (h t+K)  (2.3)  

where K=2.5046 and h= 4-0.0406. This solution exhibits 
growth of the initially small wave disturbance variables 
6, and #w a t  the expense of 6,; 6, decreases to zero and 
then becomes negative. The vertical tilt of the fully 
developed wave then changes sign, producing a meridional 
heat flux which brings the system back to its original state 
after a nondimensional length of time 4Klh=247.2.  

While this period is the fundamental one for the system, 
Fourier analysis of the elliptic solutions shows that the 
nonlinearities produce higher frequencies in abundance 
(Davis [ 4 ] ) .  These high frequencies are associated with 
transitional time scales much shorter than the fundamental 
period of oscillation, and arise from the initial wave growth 
and its subsequent feedback onto the zonal flow. Such 
sudden changes occurring in the midst of otherwise slow 
variations provide a stringent test of any computational 
scheme. 

These solutions specify unique amplitudes for each 
fluctuating variable at all times. For the later computa- 
tional tests it is convenient to define certain quadratic 

quantities which do not change in time in the case of the 
exact solution. The first of these is the sum of the available 
potential energy and the kinetic energy: 

1 1 E- [e; +e;] + [a;e; +a& (e&+#%)]. (2 .4)  

The total squared potential vorticity 

V= [e,( ai + CT- 912+ [ew( a&+ a- ‘1 1’ + [#wa2rPl2, ( 2.5 ) 

also a constant, is used with E to define the second quan- 
tity S=VIE. S is also invariant; it has the ((units” of 
a;, a;, or F1 and thus is a measure of the three dimen- 
sional scale of the We see that E and S are phys- 
ically meaningful parameters which measure the gross 
amplitude of the system and the spectral distribution of 
amplitudes, respectively. 

It is important to realize that the period of the non- 
linear oscillation is not independent of these quantities; 
with these quadratic interactions, increases in amplitude 
result in proportionately higher frequencie~.~ T o  see this, 
suppose the amplitude of each variable is initially altered 
by the same multiplicative factor 8. Then E and V are 
altered by p2, while S remains unchanged. It is evident in 
the paper by Lorenz [ l l ]  that h2 is proportional to a linear 
combination of E and V; hence h is increased by the factor 
p. K is uninfluenced by p. Thus the period 4 K l h  varies as 
8-1. 

The above features are useful tests of computational 
schemes for a nonlinear system. However, the analysis of 
a linear system is also helpful, and is more simply accom- 
plished. In  the limit Z - - + ~ ,  baroclinic instability of 6, is 
suppressed and the set (2 .2)  reduces to 

dB”=o 
dt 

dt 
* = + ~ ( ~ ) e , e , .  dt ag-a; a,  

Equation (2.6) is of the linear form 

dX %=iwx 
(2.7)  

where ~ = 6 , + i $ ~ ,  i=m, and w2=Cz (7) a;-a; 0;. 

The solution to  (2 .7)  with initial conditions x ( 0 )  =q can 
be written as x ( ~ ) = G ~ T  (2.8),  where x ( ~ )  stands for x 
evaluated at  times t=t,+nAt.  G here has the properties 
1G1=1 and arg ( G ) = p .  We note that p alone determines 
the frequency of this linear oscillation; the frequency is 
thus independent of amplitude 171, in contrast to the non- 
linear case. p=(wAt)  is generally small; it measures the 
constant increment At against the period of oscillation 
2R/W. 

2 In barotropic flows such as those considercd by  Lorcnz 1111, Lilly [lo], and Fjbrtoft [51, 
the “vertical scale” is Excd and S then describes the two-dimensional scale sssocisted 
with the horizontal flow structure. 

3 This interrelation appears to provide a mechanism lor the rapid growth 01 errors in 
the later stages, for by  shortening the oscillation period the amplitude error can grow all 
the faster having once reached moderate size. 
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Solutions to  one-step finite difference analogs of (2.7) 
are also of the form (2.8), but often exhibit amplification 
(IGl>l) and a different frequency of oscillation (arg (G) 
# p ) .  For later discussion we define the amplification 
factor as ]GI and the frequency error factor as the leading 
terms in the expansion of arg ( G ) / p  in terms of p .  1612  

reflects amplification of energy E, while the scale param- 
eter S in this linear case is a constant. 

3. PROPERTIES OF ONE-STEP COMPUTATIONAL 
METHODS 

Table 1 lists and defines the computational methods 
tested. The names of established methods are stated 
where known to the author. Nameless methods originated 
from heuristic considerations and are identified by capital 
letters. As seen from the table, the first 10 methods 
required information a t  only one time step and most 
were of second-order accuracy. Precise estimates of the 
truncation error, not shown, were usually smaller when 
the number of evaluations of j t (x l ,  . . ., xM; t) per time 
step was increased. 

The defining formulas for the methods are indicated 
in abbreviated form, with f?) standing for j i ( X i n ) ,  
. . ., ~ 2 ) ;  t o f n A t ) .  Euler's modified method was the 

only implicit method examined. In  practice, a variable 
number of iterations (4-7) were required to produce 
convergence of this solution. With one iteration, it reduced 
to the Heun method, which is the "double-forward" 
approximation used by Lorenz [13]. The Heun method 
may also be classified as one of the Runge-Kutta family 
(Hildebrand [7]). 

Method A used the "double-forward" estimate of 
X P + ' I n  as basis for a subsequent step by a centered 
difference rule. Method A' was designed to  provide one 
small time increment 0 <aAt 5 At for each fixed double 
interval 2At. In  other respects method A' coincided with 
method A. 

Method B was a simplified version of A in that a 
single forward difference estimated ~ : n + l / %  , followed 
by a centered difference extrapolation. Method C calcu- 
lated the quadratic terms in ft following a "geometric- 
mean" approximation involving x:") and a forward 
difference estimate of xjnfl); it differed from the Heun 
method which used an arithmetic average of these 
quanti ties. 

The Kutta method used forward differences, centered 
differences, and arithmetic averaging to  produce a high 
order of accuracy. 

TABLE 1 .-Dejining characteristics of some computational methods for first-order equations. "Steps" denotes the number of initial information 
time levels required by the procedure. "Order of accuracy" i s  obtained f rom a Taylor series analysis. 

Method (description) 

One-Step Methods 

1. Euler's modified.. .. ..- __. -. . .. . -. . . -. _ _  .-. . . . _ _  
2. Hem-.- - ~ ~ - - -. . . . . -. . . . . . . . . . . -. . . . . . . . . -. . 

(trapezoidal) 

(double forward) 

3. Method A _______.....____... .. ..___._..... _ _  .... 
(double forward, centered) 

4. Method A'---. .- _ _  -.. .-- __. -. -. . . . -. ._ .. . . . . . . . . 
(method A; variable At) 

6. Method B-... ..___._____._.. ...... .... ___.____.. 
(forward, centered) 

6. Method C.... . .-. -. . . .. . ____..._. . -. _.__ __. -. .. . 

8. Method D -. _ _ _  -. .. - - -. . .. __. . . . . . . . -. _ _  .. . . . -. . 
(two forwards, latest values, reversed variableorder: 

9. Method D' 

10. Euler.-.. _ _  _ _  - .-.- _ _  _ _  _ _ _  --. .- __. . . -. . . . _ _  -. .. . . 
(forward) 

Two-Step Methods 

11. Adams-Bashforth 

12. Centered ____.._. ... ....-. ~ .__...__ -. .-.- _ _  .- .. _ _  
13. Centered.-. .- __. . . . . . . . ....-. . -. .. .- _ _  _ _  .. __. . . . 

(uncorrected) 

(correction A) 

- - 
Steps 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

Order of 
accuracy 

2 

2 

2 

2 

2 

2 

4 

1 

1 

1 

Number 
if f i  evalu- 
ttions per 
time step 

Formulas or description 

Same DS D except that order of variables,assigned 
, I S  changed randomly before each new tlmo step ) 

- __ 
Explicit 

or 
implicit 

I 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 
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3. Method A ___.______._.____ ............ 
4. Method A’: 

General a-. ........................... 

Scheme D consisted of two successive operations at  
each time step, each similar to a forward difference with 
time increment At/2. Unlike the simple forward difference, 
the latest estimates of the variables xi were used in evalu- 
ating j i . 4  Thus, in the f i s t  operation, f l  would depend only 
upon the variables xp), . . . .  xg); with xpf112)* 
determined, j z  would involve x?+~/~)* ,  x,j“), . . . .  x$) .  

Finally, x?+llZ)*, . . . .  x$?:la *, x$) would determine 
fM and hence x$+’J2)*. The second and final operation 
consisted of reversing the order in which the variables 
were solved and then repeating the first operation, starting 
with the set xPf1lz)* . . . . .  x g n + l I 2 ) *  and obtaining 
Xfn+l’ (n+l) .  

1 * . - 1  X M  

From this description it appears that solutions obtained 
by method D would usually depend upon the order in 
which the variables were solved. This could be a disadvan- 
tage in a grid point or wave number space calculation, 
for the geometry of the scanning pattern would determine 
the variable order and hence geometrically bias the 
solution. 

In  an attempt to minimize this order bias scheme D‘ 
was invented. It coincided with scheme D except that 
the order of variables was determined randomly before 
each new time step. This method appeared to  be mainly 
of academic interest since the programming difficulties 
would be severe in a system with many degrees of freedom. 

The remaining methods shown in’table 1 are well known 
and are useful in later comparisons. The two-step schemes 
are discussed in section 5 and Appendix A. 

(I+P”/sa)’/2 

(l+a6p6/64)1/4 
x (1 +(2 - - ,YD~/Fd~ 

4 This aspect of method D was related to the Gauss-Seidel iterative method of solving 
linear systems of algebraic equations. 

(l+p2(1/6-a/4 
+or2/8)+ . .  .) 

(1+.0417p2+ . .  .) 
(1+.0467p?+ . .  .) 
(1+.0617pa+ . .  .) 
!1+.1667p2+ . .  .) 
(1+.0831@+ . .  .) 

Let us now examine properties of the one-step schemes 
as shown in table 2 .  Considering the linear oscillation first, 
we note that amplification factors for many one-step 
methods involved p to a power a t  least equal to 4; higher 
powers corresponded to increased sensitivity of energy 
errors to a change in At. On the other hand, the frequency 
error was not so sensitive to At, except in the highly ac- 
curate Kutta scheme. 

Most numerical solutions for the nonlinear case were 
obtained with 24 time increments per period of oscillation. 
Comparative energy amplification values mere found to 
be in qualitative accord with those of the linear oscillation. 
However, the shorter internal time scale of the nonlinear 
solution produced large quantitative differences. Frac- 
tional errors in the scale parameter S were much smaller 
than those in E, but tended to resemble the E errors. 
Frequency errors exceeded E errors as in the linear case. 
However, as expected from earlier remarks, comparative 
frequency errors were not correctly indicated by the 
linear results; in some cases the fractional frequency error 
changed significantly with time. 

In view of the linear solution properties it is not surpris- 
ing that the schemes numbered 2, 5, 6 ,  and 10 were 
inferior to the other more complicated one-step methods 
when applied to the nonlinear system. Despite its two 
part simplicity, scheme D was surprisingly successful in 
the nonlinear test; as expected, the errors varied with the 
order in which the three variables were solved. Interest- 
ingly, scheme D’ with randomized order was compara- 
tively poor. 

Results for method A‘ showed that, given an average 
value of At, the use of variable time increments resulted in 

......... 

1/24 
1/24 
1/24 
1/24 

1/24 

TABLE 2.-Properties of one-step computational methods taken from linear analysis and the numerical solutions of nonlinear equations. All  
numerical values are estimates based upon the first several cycles. Numerical values estimated from linear oscillations with the same period 
as the nonlinear oscillation are shown in parentheses. 

(1+p2/24+ . .  .) 
(1 -s2/3) 

........................ 

........................ 

........................ 

........................ 

I 1 Linear periodic solution 

1/24 

......... 

1/24 
1/48 
1/72 
1/96 

Nonlinear periodic solution 

random variable order ................. 

10. Euler ................................. 
severe instability commenced at: 

cycle 0.7. ..................................................... 
cycle 1.7.. ................................................... 
cycle 2.7. ..................................................... 
cycle 4.0. ..................................................... 

Method 

1 

(l+p2) I/? 

1 Amplification factor 
101 

..................... 
................................ 

1. Euler’s modified- 
2. Heun. 

... 
a = 1.0- ............................. (i+.Oi56j;bjv~ - ~ ’  

(1+.0?.54pa+ . .  .) 1/2 
(1 +.0592pfl+ . .  .) 112 

a=O.8 ............................... 
n=0.6- .............................. 
a = O . O - .  ............................. (1 +.5000p5+ . .  .) 1/2 

O<m<lpicked randomly ........... I (1+.1429ps+. . .)w 
5. Method B ............................. 
6. Method C ............................ 
7. Kutta ................................. 
X. Method n: 

order of solution of variables: 
(ea,ez, +a)- ........................ 
(+a, ea, ez) ......................... (er ,  +a em)  ......................... 

9. Method fit: 

Frequency error factor 2 
period 

103Xnet fractional 
energy error per cycle 

<+ .OB (0) 
fl6-l. (+%.) 

’ +13. (+3.4) 
+0.48 (+0.12) 

+0.48 (fO.12) 
+0.75 (4-0.19) 
f 1 . 6  (f.45) 

+16. (f3.8) 

+14. (+l.l) 
+158. (f28.) 
+110. (+28.) 

-0.81 (-0.12) 

+2,040. (f3.642.) 

+875. (+660.) 
+i,aw. (+I m.) 

lOlXiiet fractional 
requency error per cycll 

4-46, (-5.2 
+l62. ( f l l . )  
+104. ( f3 . )  
+64. (+2.8) 

+64. (+2.8) 
+62. (+3.2) 
4-53, (+4.2) 

variable: 
t70. variable: to -180.}(+11.4) 

t S O .  to -180.) (+5.7) 
+167. (+ll.) 
+125. (I-11.) 
+58. (+.59) 

f 5 4 .  (+2.8) 
+fi7. (+2.8) 
+67. (+2.9) 

4-410. (+2.8) 

+8O. (-22.8) 

+I%. (-2.5) 
+46. (-5.7) 

lOlXnet fractional 
d e  error per cycle 

+0.23 (0) 
+0.35 (0) 

+7. (0) 

f 2 . 3  (0) 
f 5 . 5  (0) 

+0.86 (0) 

+5.7 -0.20 (0) (0) 

.................. 

+m. (f4xo.j 
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103Xmax. 
fractional 

energy 
error per 

cycle 

0. 
0. 
0. 

398. 

190. 

110. 

330. 

53. 

2.5 

361 

10dXmax. 
fractional 

scale 
error per 

cycle -- 
....................... 

0. 
0. 
0. 

810. 

410. 

230. 

....................... 

....................... 

360. 

110. 

77. 

increased computational errors for both linear and non- 
linear oscillations when applied to method A. Linear 
analysis suggests that this conclusion is valid for other one 
step schemes as well. 

Thus, the outstanding one-step methods were those 
numbered 1, 3, 7 ,  and 8. Further information on these was 
given by the maximum local errors in E and S. These 
errors, not shown in table 2,  were confined to the quick 
transition periods of the nonlinear solution. They were 
much larger than the net error in the case of Euler’s modi- 
fied method, despite the increased number of iterations 
per time step during the transition. On the other hand, the 
Kutta method exhibited excellent stability in this sense, as 
expected from its small local truncation error. 

~~~ 

lOIXnet fractional 
frequency error 

per cycle 

4. TIME RESOLUTION VS. COMPLEXITY OF ONE-STEP 
METHODS 

lO4Xnet fractional 
scale error per cycle 

We have noted that those one step schemes which were 
most simply calculated a t  each time step were predictably 
poor compared to more complicated schemes. However, a 
natural question is whether a simple one-step scheme used 
with smaller time increments can compete favorably with 
these more sophisticated ones. 

To  test this, four experiments using the simple Euler 
(forward difference) method with successively smaller 
values were performed. With 48 time increments per 
period, the Euler scheme required about as much compu- 
tational time as each of the schemes 2 ,  5, 6 ,  8, or 9 required 
with only 24 increments per period. From table 2 we see 
that the performance of each of the latter methods was 
clearly superior to the Euler method in this case. Similar 

equal computational time” comparisons made with three 
part schemes 3 , 4 ,  and 7 lead to the sBme conclusion. Thus, 
the Euler method appears inferior to more complex one 

L t  

11. Adams-Bashforth. ..................... 
(severe instability at cycle 1.6) 

............................... 12. Centered 
(uncorrected) 
(instability beyond cycle 20) 

............................... 13. Centered 
(correction A applied each 24 steps) 
(severe instability at cycle 5.7) 

step schemes even when it is used with smaller time 
increments . 

An additional experiment was next performed with the 
Heun method rather than the Euler method. The time 
resolution was increased to 48 increments per oscillation 
and results were compared with those of method A used 
with 24 increments per period. It is seen in table 2 that 
method A was superior to the simpler Heun method while 
demanding only 7i as much computational time. 

Based on these results it appears that increased time 
resolution is not the most efficient way to decrease com- 
putational errors for one-step schemes. Instead, as sug- 
gested by the amplification factors for linear oscillations, 
accuracy is usually achieved by increasing the number of 
ji evaluations per time step. 

(l+p’/4+. . . ) I /?  (l+5/12 p2+. . 
....................................... 

1 ( l+p2/6)  

......................................... 

1 (l+P2/6) 

................................. ....,. 

5. TWO-STEP METHODS 

The results discussed in sections 3 and 4 were confined to 
one-step methods. To put these in better perspective we 
now examine the results of similar tests on the commonly 
used two-step methods defined in table 1. 

We first note that the “extra” time level (n-1) ap- 
peared solely in the function f‘“;” for the Adams-Bash- 
forth scheme; only j (7)  was evaluated in the centered 
method. This difference was reflected in the solutions to 
the linear system. For the centered method the solution 
was 

(5.1) 
where tan B=p(l-p2)-1’2. q1 and q2 were constants which 
could be determined by x(%) and x ( ~ - ’ ) ;  Lilly [lo] gave 
their approximate form for a special case. 

The first term in (5.1) corresponds to the “physical 
mode” of the solution, modified by computational errors. 
The second term is the extraneous “computational mode’’ 

~ ( n )  = rllei8n+ ,,2( - 1)ne-iOn 

TABLE 3.-Properties of two-step computational methods taken f rom linear analysis and the numerical solutions of nonlinear equations. A11 
numerical values are estimates based upon  the first Several cycles. Numerical values estimated f rom linear oscillations with the samc period 
as th  nonlinear oscillation are shown in parentheses. Values for the nonlinear oscillation are classified according to estimated “physical mode” 
and “cm.putationa1 mode” contributions. 

Method 

1 Linear Periodic Solution I Nonlinear Periodic Solution 

1 Amplification 1 Frequency LU 
factor IGTl error factor 1 period 

....... 
1/24 
1/48 
1/72 

1/24 

1/48 

1/72 

....... 

. - -. -. . 
1/24 

1/48 

1/72 

103Xnet fractional 
:nergy error per cycle 

...................... 
+445. (+28.) 
+26.5 (4-3.4) 
4-6.45 (i-1.0) 

...................... 

bounded by 
+EO. (0) 
bounded by 
+24. (0) 
bounded by 
1-12, (0) 

...................... 

bounded by 
+136. (0) 
bounded by 
t 6 . 8  (0) 
bounded by 
+12.0 (0) 

Physical mode 

........................................... 
+158. (+27.6) +34. (0) 
+ l O l .  (+6.9) +O.U (0) 
+57. (f3.1) +0.43 (0) ...................I ........................ 

+82. (+l l . )  

4-70.2 (+3.) 

4-62.5 (+1.2) 

bounded by 
+65. (0) 
bounded by 
+7.5 (0) 
bounded by 
+2.5 (0) 

+167. 

+69. 

+63. 

bounded by 
-50. (0) 
bounded by 
-1.36 (0) 
bounded by 
+.so (0) 

Computational mode 

298-690 0 - 68 - 4 
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introduced by the increased order of the finite difference 
method. A characteristic of this mode is its sign alterna- 
tion a t  successive time steps. For the centered method, 
(5.1) shows that the maximum size of the computational 
mode never decreases as n increases. This is not the case 
for the Adams-Bashforth method, where the maximum 
amplitude can be shown to decrease as p”. Thus, problems 
of “starting” and correcting the solution in order to 
reduce the amplitude of the computational modes appear 
important only in the case of centered differences. These 
topics are discussed in Appendix A. 

Table 3 presents the quantitative results obtained for 
the two-step methods. All solutions were started with the 
values x(O) and x(’) taken from the exact solution (equa- 
tion ( 2 . 3 ) ) ;  as discussed in Appendix A, this procedure 
does not completely exclude the computational mode 
initially. 

We first note that computational mode oscillations (of 
period (2At)) never appeared in the nonlinear case using 
the Adams-Bashforth method. On the other hand, such 
fluctuations in E and S were apparent with the centereP 
methods, and usually exceeded those associated with the 
physical mode. Correction of the centered method by 
procedure A did reduce the computational mode, but to a 
lesser extent than that expected from the linear solutions. 

The remainder of table 3 concerns the characteristics 
of the physical mode; its errors are the counterparts of 
those discussed for the one-step schemes in sections 3 and 
4.  We first note that the frequency errors exceeded the 
amplitude errors for linear oscillations as in the one-step 
methods. This was also true for the nonlinear solutions 
when the time increments were small; with larger incre- 
ments the reverse was true, and in two instances severe 
computational instability resulted. 

Comparison with table 2 shows clearly that, for a given 
At, these two-step methods usually produced larger errors 
in the physical mode than the one-step schemes. However, 
considered on an “equal computational time” basis (as 
in section 4) the standings of the two-step methods im- 
proved. For example, their performance generally sur- 
passed that of the poorer one-step methods 2 ,  5, 6, or 10. 
Nevertheless, the two-step methods remained generally 
inferior to the outstanding one-step methods 3 and 8 in 
this case. 

Table 3 also allows intracomparison of physical mode 
errors for the two-step methods. In the cases of largest 
At values, the Adams-Bashforth and “corrected-centered” 
methods were rather poor. However, with smaller At 
values they represented a slight improvement over the 
LLuncorrected-centered” method. Considering also the 
large computational mode errors of the centered schemes, 
one must conclude that the Adams-Bashforth and “cor- 
rected-centered” schemes were superior to the “uncor- 
rected-cen tered” method. 

6. CONCLUDING REMARKS 
We hare examined the properties of computational 

schemes applied to a spectral baroclinic model of maximum 

simplicity whose linear and nonlinear characteristics were 
known. The performance of computational methods for 
the linear oscillation was found to be a better indicator 
of the nonlinear properties than the order of truncation 
error. However, the truncation error was useful in assessing 
local errors associated with sudden nonlinear changes in 
the solution. Largest fractional errors were usually found 
in the frequency, followed by successively smaller ones in 
the amplitude and spatial spectrum. 

For the one-step methods, reduction of long-term errors 
urns usually accomplished most effectively by increasing 
the number of calculations of the time derivatives at 
each time step rather than reducing the time increment 
At. The best one-step methods were found to be a four 
part Kutta scheme, the three-part scheme A, Eider’s 
modified implicit scheme, and a two-part scheme which 
utilized the latest values of each ordered variable. Other 
two-part methods produced larger errors. Also, the use 
of variable time increments with method A usually resulted 
in increased local and propagated errors for both types 
of oscillations. 

The two-step methods produced physical mode errors 
tvhich were generally larger than most one-step methods 
with the same time increment. In fact, these two step 
schemes compared favorably only when their computa- 
tional time advantage was sacrificed by using a reduced 
time increment. In  this case, the best of these two-step 
methods (Adams-Bashforth) was still somewhat inferior 
to the best one-step methods when compared on an “equal 
computation time” basis. In  all cases both the corrected 
and uncorrected versions of the centered difference scheme 
developed relatively large “computational mode” oscil- 
lations during the nonlinear phases of the oscillation. 

The above conclusions should be accepted with a note 
of caution. They have been conveniently obtained through 
stitdy of a small component model. Thus, their validity 
for systems with many more degrees of freedom is not 
assured. For example, a large geophysical system under- 
going irregular oscillations possesses a variety of individual 
frequencies which are sustained by nonlinear energy ex- 
changes involving triads of elements similar to that found 
in section 2 .  The mechanisms of these transfers are 
frequency dependent (Phillips [IS]) , so an accurate por- 
trayal of the fluctuations would demand a numerical 
scheme with small frequency errors as well as small 
amplitude errors. Most schemes do not satisfy both of 
these requirements. This suggests that detailed climatic 
or energetic studies may require multipart, one-step 
schemes, probably from the Runge-Kutta family. 

APPENDIX A.-STARTING AND CORRECTION 
PROCEDURES FOR CENTERED DIFFERENCES 

The purpose of this appendix is to discuss some proce- 
dures for reducing the amplitude of the computational 
mode associated with the centered difference scheme. 

It is convenient to begin with the linear theory. As 
mentioned in section 5, ql and 7 2  are determined by x ( ~ ) ,  
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xcn-l) and equation (5.1). At the beginning of the compu- 
tation these relations are given by: 

~l=(x(o)e-*e+~(1) ) / (2  cos e) 

Since the initial conditions x(O) are known exactly, x(’) 
alone determines vl and v2. The method by which x(’)  is 
estimated from x(O) may be termed the “st,arting method.” 

The tests discussed in section 5 were all started using the 
exact’’ value of x(’); in this way, it was believed that 

initial errors would be minimized. However, this proce- 
dure does not eliminate the computational mode com- 
pletely. This may be seen in the linear case, where the 
exact solution gives 

‘ I  

(A.2) (0)  ip. - x e 

Substitution into (A.l)  shows that 7z=x(0)(ip3/12+ . .  .), 
and is not zero. This is a characteristic of other multistep 
schemes ([7], p. 207), and apparently arises because the 
phase error (e--p) of the centered scheme is not zero. 
Equations (A.2) and (A.l) also yield 91=x(0)[l-ip3/12+ ...I; 
the associated amplitude error is O(ps)  while the phase 
error is O(p3) .  

These results may be compared with those of the more 
common starting method which uses a forward difference 
to estimate x“): 

(A.3) x“’ = x(0) (1  +ip) . 

From (A.l)  we then obtain 

n 2 = - x ( o ’ ( $ + .  . .), 711=x‘o’ (1+e+. 4 . .). 
Thus, use of the forward difference in place of the ‘(exact” 
value produces an initial computational mode amplitude 
larger by a factor of ( 3 / p ) .  It also produces a larger 
amplitude error in the physical mode, of O(p2) .  

Unfortunately, amplification of the computational mode 
frequently develops spontaneously in the nonlinear solu- 
tions, so that starting procedures alone seem inadequate. 
In such cases correction procedures may be periodically 
applied to  reduce the computational mode. Two such 
methods will now be discussed. 

‘(Correction A” was used in the tests discussed in 
section 5. It consisted of first averaging the centered 
difference solutions x ( ~ )  and xcn- l ) ,  followed by forward 
and backward differences to  give the “corrected” values 
;((a) and k(n-1): 

When (A.4) was applied to the linear system, the “cor- 
rected” values $, and $, were found in terms of the original 
quantities 91 and v2. In  this case the results could be 
expressed as 

and 

Inequality (A.5) indicates that the correctiop would reduce 
the computational mode amplitude when it was originally 
large enough (1~21>l~ l10(p3) ) .  However, this correction 
could increase the computational mode when it was 
initially small enough (Iv21<lsl10(p3)). Inequality (A.6) 
indicates that the correction procedure would usually 
introduce a small (O(p2) )  error into the physical mode. 

Let us now consider “correction B,” which was not used 
in section 5. It consisted of using backward and forward 
differences from the respective centered difference solu- 
tions x ( ~ )  and x ( ~ - I ) ,  followed by averaging of the two 
estimates then available a t  each time level: 

Application of this procedure to  the linear system (2.6) 
gave results nearly the same as those expressed in (A.5, 
A.6) for correction A. 

Finally, corrections A and B were applied to the non- 
‘ linear system for the case with 24 time increments per 

cycle; the results may be seen in table AI. We first note 
that both procedures appear to have encouraged a severe 
computational instability in the physical mode while 
suppressing the computational mode. However, this dis- 
tressing behavior was not true of correction A in cases 
with smaller time increments (see section 5). 

On the basis of table A l l  correction A appears slightly 
superior to the correction B in its ability to follow the 
physical mode. With respect to  computational mode 
oscillations in E and S, correction A was a nearly perfect 
damping agent. Correction B damped only about 95 
percent of these energy oscillations. For this reason cor- 
rection A was chosen for the tests of section 5. 
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